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Abstract—In the context of global warming, the Lake Surface
Water Temperature (LSWT) exhibits a general upward trend. As
an indicator of climate change, the surface water temperature of
plateau lakes is particularly sensitive to climate warming. In this
study, the machine learning model and physical process model
are combined to predict water temperature in lake systems: The
Air2water model and the Long Short Term Memory (LSTM)
model are combined to form a prediction model for the inversion
and prediction of 11 typical plateau lakes in the Yunnan-
Guizhou Plateau. The modeling results show that the Air2water
model performs best, followed by the LSTM model. Overall, the
Air2water model and the LSTM model effectively reproduce the
monthly, seasonal, and interannual variations of LSWT dynamics
in the 11 lakes. The research results show that the LSWT data
set from 2021 to 2025 is constructed based on the forecast result,
and it is found that six lakes, including Caohai, Dianchi, Erhai,
Qionghai, Xingyun Lake and Yangzonghai, showed significant
warming in the next five years (the maximum warming rate was
less than +0.2°C/year), while the remaining five lakes showed no
significant changes, and the size classification of LSWT data in
different spaces on the interannual scale was consistent with the
classification of altitudes. By conducting extensive exploration
and research on the inversion of LSWT using physical process
models and machine learning models, this study offers novel
solutions for LSWT prediction and inversion. The study also
provides a solid theoretical and practical foundation for future
LSWT research, thereby holding practical significance and re-
search value.

Index Terms—Climate change, Lake surface water tempera-
ture, Air2water, Long-Short Term Memory, Global warming

I. INTRODUCTION

ATER temperature is one of the most important in-

dicators of lake ecosystems, controlling physical pro-
cesses (e.g., thermal stratification, mixing processes), chemical
processes (e.g., chemical reaction rate, oxygen solubility) and
ecological processes (e.g., biological metabolism, growth and
reproduction) in lakes and have significant effects on physical,
biological and chemical processes throughout the lake [1],
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[2]. The lake surface water temperature (LSWT) refers to
the water temperature within the uppermost layer (Om to 1m)
of a lake, which is one of the parameters that characterize
the water temperature of the lake, serving as an important
physical parameter in the field of lake ecosystem research
[3], [4]. LSWT plays a main role in controlling the physical,
chemical, and ecological processes of lakes, with significant
implications on lake water quality and ecosystem function
[5]. LSWT plays a critical role in influencing the ecological
environment of lakes and serves as a vital indicator of the
impact of global climate change [6]-[8] and its key driver is
temperature [9], [10] influenced by other objective factors such
as solar radiation [11], relative humidity [12], ice sheet [13]
etc, also influenced by local factors such as cloud cover and
lake morphology [14], [15], human activities [16] and surface
runoff [17] etc. Matulla et al. [16] used Alpine lakes to show
that the extent to which anthropogenic climate (atmospheric
variables based on different data related to the hydrosphere)
changes in LSWT did not begin to decline until mid-1980s.
Oswald et al. [18] showed that shallow lakes have a tendency
to warm up more rapidly compared to deep lakes due to their
lower thermal storage capacity, especially at higher surface
water temperatures. However, Sharma et al. [19] proposed
that climatic factors have a greater effect on surface water
temperature than lake morphology on a wide spatial scale.
Woolway et al. [15] showed that the response of lakes to
climate change is closely related to their location and scale,
and lakes with different locations and scales have different
responses to climate change. Studies have shown that the
global lake LSWT is rising at a rate of about 0.3°C per
decade [14], [20], [21]. Significant transformations in Earth’s
freshwater resources and their associated processes are already
in progress. Along with this trend, significant changes in
water temperature may have serious consequences for lake
ecosystems [22]. Due to the limitations of inverting existing
remote sensing data, which restricts the ability to capture
historical changes in LSWT and forecast future trends, as
well as the lack of adequate spatiotemporal coverage for in
situ measurements, an increasing number of researchers are
now focusing on the development of LSWT-oriented models.
Piccolroaz et al. [23] developed an Air2Water model that only
needs to input air temperature for LSWT models that are
plagued by multiple uncontrollable factors, which is simple
and the output LSWT has high accuracy, is widely used
by researchers for LSWT prediction and can easily be used
to predict the lake’s response to climate change. Indeed, as



highlighted by Piccolroaz et al. [24], making reliable predic-
tions regarding the evolution of climate change is challenging.
Therefore, O’Beirne et al. [25] studied LSWT response to
climate change from perspective of climate multi-factor trends,
and Yankova et al. [26] studies the response of lakes to climate
change from a thermodynamic perspective. Bruce et al. [27]
investigate the response of LSWT to complex thermodynamic
fluxes. Their approach involves utilizing process-based nu-
merical models to accurately quantify these responses, which
necessitates the utilization of detailed on-lake meteorological
data (such as wind speed, humidity, and cloud cover) as input
parameters. The current complex input parameters make neural
networks widely favored in model building. Zhu et al. [28]
designed a multi-layer perceptron neural network (MLPNN)
model, along with a wavelet transform and MLPNN ensemble
model (WT_MLPNN), to predict LSWT and compared the
results with the Air2Water model based on physical statistics
and the nonlinear regression model, and results showed that
the Air2Water model was optimal. On the basis of these
studies, Zhu et al. [29] estimated the LSWT of the 25 Polish
lowland lakes based on the air2water model. Fabio et al. [30]
designed a novel machine learning algorithm called multilayer
perceptron and random forest (MLP-RF) to predict LSWT,
which its predictive ability is much better than existing models
such as air2water. Yu et al. [31] constructed prediction model
based on support vector regression, analytic hierarchy and
backpropagation artificial neural networks, combining meteo-
rological data, human factors and lake intrinsic data to predict
lake LSWT changes. LSWT inversion and prediction face
challenges due to the complex interactions among multiple
factors. These complexities make the task of inverting and
predicting LSWT more challenging. However, it is important
to note that changes in LSWT have significant implications for
lake stratification and seasonal deep convection. They impact
various aspects such as mixing time, duration, and intensity,
which are crucial factors in LSWT inversion and prediction.

In this study, we mainly apply the Long Short-Term Mem-
ory (LSTM) model and the Air2Water model to predict the
LSWT of 11 major lakes on the Yunnan-Guizhou Plateau:
Firstly, long-term observed monthly average air and LSWT
data for 11 major lakes on the Yunnan-Guizhou Plateau in
China were collected and established. Secondly, performance
of the two models was compared and analyzed under monthly,
quarterly and yearly spatial and temporal dimensions for the
11 major lakes on the Yunnan-Guizhou Plateau, the effects
of natural and anthropogenic factors on the LSWTs of these
plateau lakes are elucidated. Finally, a high-precision data set
of LSWTs of 11 major lakes on the Yunnan-Guizhou Plateau
from 2021 to 2025 is constructed by combining the LSTM
and Air2Water models, the expected trends of the LSWT were
analyzed during this period.

II. MATERIALS AND METHODS
A. Study area and data

This study focuses on the 11 primary lakes located in the
Yunnan-Guizhou Plateau, as illustrated in Fig.1. The Yunnan-
Guizhou Plateau, characterized by a substantial distribution of

freshwater resources, encompasses nine lakes within Yunnan
Province, namely Dianchi, Erhai, Fuxian Lake, Chenghai,
Lugu Lake, Qilu Lake, Xingyun Lake, Yilong Lake, and Yang-
zonghai. Additionally, Qionghai Lake in Sichuan Province and
Caohai Lake in Guizhou are included. Together, these 11 lakes,
covering central and northwestern Yunnan, account for ap-
proximately 85% of the total lake area. Dianchi Lake, located
southwest of Kunming City, represents a significant lake in
Yunnan Province, while Erhai Lake, situated on the outskirts
of Dali, ranks as the province’s second-largest freshwater lake.
Fuxian Lake, the largest deep-water freshwater lake in China,
holds a prominent position as a natural lake. Chenghai Lake,
located in Yongsheng County, Lijiang City, is the second-
largest freshwater lake in western Yunnan. Lugu Lake, situated
at a higher altitude in the southwest area of Sichuan Province,
exhibits a subtropical character. Qilu Lake falls into the
category of rifted lakes, while Xingyun Lake, Yilong Lake,
and Yangzonghai Lake are classified as plateau rifted lakes.
Caohai Lake, the largest natural lake in Guizhou, ranks among
the three major plateau freshwater lakes in China. Similarly,
Qionghai Lake in Sichuan Province represents the second-
largest freshwater lake and an early rifted lake. The 11 main
lakes in the Yunnan-Guizhou Plateau have played a vital role in
nurturing the area’s biodiversity, climatic diversity, and cultural
richness. Unfortunately, the discharge of industrial wastewater
and domestic sewage has resulted in the deterioration of lake
water quality. Consequently, it is of utmost significance to
investigate the influence of natural environmental distribution
and human activities on Lake Surface Water Temperature
(LSWT) for effective lake environment preservation.

This study covers a time span from January 2001 to De-
cember 2020 and focuses on various datasets related to the
11 main lakes in the Yunnan-Guizhou Plateau. The key data
sources include information on lake boundary and area, LSWT,
near-surface air temperature, and other relevant variables.
The lake boundary data was obtained by utilizing Landsat
Series TM, ETM+, and OLI remote sensing image data
from the geospatial data cloud. LSWT data was extracted
from MOD11A2 images, which are lkm resolution 8-day
synthetic level 3 products obtained through NASA’s Earth
Observation System (EOSDIS). Additionally, near-surface air
temperature data was acquired from the European Centre for
Medium-Range Weather Forecasts (ECMWF), providing 2m
atmospheric temperature data at a resolution of 0.125° x
0.125°.

B. Air2Water Model

The model is a simple tool for predicting LSWT only when
air temperature is available, can correctly simulate hysteresis
loops of air and water temperature in shallow and deep lakes,
and accurately captures seasonal and interannual fluctuations
in LSWT. The model is based on the volumetric integrated
thermal balance equation that simulate stratification dynamics
in lakes without the need for complex descriptions of air-
water interface processes based on detailed quantification of
individual heat flux components. Since the lakes in the Yungui
Plateau were not frozen, a 6-parameter model was selected
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Fig. 1. Study area map

for the entire study. Simple linearization of heat flux terms
by using Taylor unfolding and using air temperature instead
of the combined effects of related processes and fluxes [23],
[32]. Six-parameter version [23] (a; to ag) can be expressed
as follows.
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where T, is LSWT, T.. is the deep lake temperature, 7} is air
temperature, t is time, and t, is the duration of the year in
suitable time units. o is a dimensionless number representing
the ratio between the volume of the surface lake layer and
a reference volume, and ai-ag are parameters that can be
estimated by model calibration using the observed LSWT data.

C. Long-short term memory (LSTM) Model

The Long Short-Term Memory (LSTM) model is a type of
recurrent neural network (RNN) that is specifically designed
for learning and predicting based on long-term sequential

data. Unlike traditional RNNs, LSTM incorporates a memory
mechanism that allows it to capture and utilize historical
information for predicting current output conditions, even over
long distances in the sequence. This is achieved by introducing
a cell state, also known as the “memory cell,” to the hidden
layer of the original RNN. The LSTM model takes three
inputs: the current input value, the output value from the
previous time step, and the cell state from the previous time
step. It produces two outputs: the current output value and
the current cell state. The model utilizes “gates” in its fully
connected layers to control the flow of information. Each cell
in the LSTM is governed by three types of gates: the forgetting
gate, the input gate, and the output gate. The forgetting gate
determines which parts of the previous cell state to retain
and which to discard, enabling the model to handle long-
range dependencies and effectively address the limitations of
traditional RNNs.
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Wy is the weight matrix of the forgetting gate, W; is the
weight matrix of the input gate, W, is the weight matrix of
the calculation unit, and W, is the weight matrix of the output
gate; by is the bias term of the forgetting gate, b; is the bias
term of the input gate, b, is the bias term of the calculation
unit state, and b, is the bias term of the output gate; h;_; is the
output and cell state of the previous moment, z; is the input
of the current moment, () is refers to the dot product of the
matrix elements; f; is the current memory of the forgetting
gate, 7; is the current memory of the input gate, c; is the
current memory of the state of the computing unit, o, is the
current memory of the output gate, and h; is the current output
value.

D. Model performance evaluation

In this study, the models were utilized to classify 11 lakes
based on the error between the estimated and observed values.
The dataset was divided into two subsets, with 70% of the data
used for model training and the remaining 30% for model
validation. The accuracy of the prediction was assessed using
key metrics. The Root Mean Square Error (RMSE) served as a
reliable indicator of prediction accuracy. The Mean Absolute
Error (MAE) quantified the average difference between the
predicted and true values. Additionally, the Standard Deviation
(SD) provided insights into the dispersion of values relative
to the mean. These measures, namely RMSE, MAE, and
SD, were calculated using the equations as shown in the
accompanying diagrams:
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where i = 1,--- ,n, n is the number of measurements; X5,

refers to the ¢ time observation value; X, ,q¢1,; refers to the
1 time simulated value; o reflect the degree of dispersion of

a data set; X; represents the real numbers in the dataset; X
represents the average value of the dataset.

III. RESULTS AND DISCUSSION

The objective of this study is to conduct experimental
research on 11 lakes situated in the Yunnan-Guizhou Plateau.
The objective of the study is to analyze outcomes and assess
the effectiveness of the applied models in the context of lake
environments. First, the classification results of the models
employed in the Yunnan-Guizhou Plateau lakes are summa-
rized, and a comprehensive analysis of the newly constructed
LSWT dataset is conducted. Second, a detailed assessment of
the Air2Water model and the LSTM model are performed,
considering their performance on various temporal scales,
including monthly, seasonal, and annual variations. Third, by
comparing the simulated and observed data from both models,
the strengths and weaknesses of simulating LSWT using phys-
ical models and machine learning algorithms are determined.
This comparative analysis aims to evaluate the accuracy of the
models. By conducting experiments and simulations on lakes
located in the Yunnan-Guizhou Plateau, this study evaluates
the predictive powers of various models in capturing lake
characteristics. The ultimate goal is to determine the most
reliable model for simulating the distribution of LSWT.

A. Model classification on spatiotemporal scales

This study assesses the suitability of both models in predict-
ing lake water temperature by examining the trends in error
between simulated and observed data. The aim is to identify
the most suitable model for different time periods based on
these findings. By analyzing the discrepancies between the
simulated and observed data, the study aims to determine the
model that exhibits the highest accuracy in predicting lake
water temperature.

The presented Table.I and Table.II provide a comprehensive
overview of the model performance for the 11 lakes, consid-
ering monthly, quarterly, and annual averages. It is evident
from the tables that the Air2water model demonstrates better
suitability for lakes with a higher sensitivity to temperature,
while the LSTM model shows superior performance during
May to June and November. Furthermore, the seasonal average
analysis reveals that during the first quarter, the Air2water
model outperforms the LSTM model for all lakes, suggesting
that these lakes are primarily influenced by air temperature in

TABLE I
MODEL SELECTION RESULTS ON THE MONTHLY MEAN SCALE.
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“A” represents the Air2water model, “L” represents the LSTM model.

TABLE I
MODEL SELECTION RESULTS ON THE SEASONAL AND ANNUAL SCALES.

1Q 2Q 3Q 4Q yearly
Caohai A L L A A
Chenghai A L A L A
Dianchi A A L A A
Erhai A L L A A
Fuxianhu A A L A A
Luguhu A L L L A
Qiluhu A A A L A
Qionghai A L L A A
Xingyunhu A A A A A
Yangzonghai A L A L A
Yilonghu A A A L L

“A” represents the Air2water model, “L” represents the LSTM model.

spring and less affected by other factors. In the second and
third quarters, the majority of lakes exhibit better results with
the LSTM model, indicating that during the warm seasons of
summer and autumn, the lake surface water temperature is in-
fluenced by various factors, including internal lake dynamics.
In the fourth quarter, a mix of lakes show better performance
with either the Air2water or LSTM model. This study analyzes
the RMSE, MAE, and SD error values between the estimated
and observed data of the two models for different time periods.
Based on this analysis, a new dataset is constructed, and its
predictive ability for future data variations is examined.

B. Trend analysis of new datasets

Through the analysis of classification data based on the
models, it is evident that both the LSTM and Air2water models
exhibit the poorest performance on Lugu Lake. During the
experiment, systematic errors were observed in both models.
As the monthly average temperature data from January 2021
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g. 2. Variation trend of the annual LSWT of 11 lakes in the next five years

to December 2025 is predicted by the LSTM model, the
Air2water model utilizes these predicted air temperatures to
estimate the monthly average lake surface water temperature
data within the same timeframe. Therefore, the estimated
data will reflect the combined systematic error of both the
LSTM and Air2water models. However, due to the intricate
interannual thermal behavior and the considerable lake depth
of Lugu Lake, the interannual variation of lake surface water
temperature deviates significantly from a sinusoidal curve. The
error values of the two models in capturing the interannual
change curve of lake surface water temperature are substantial.
As a result, the LSTM model demonstrates superior per-
formance in predicting future data, reducing the systematic
error associated with the Air2water model and mitigating the
reproducibility error caused by the lake’s thermal behavior
during estimation. Consequently, the future dataset predicted
by the LSTM model is solely adopted based on the data for
Lugu Lake.

Fig.2 shows the annual average scatter plot of LSWT in 11
lakes from 2021 to 2025. We use the newly built dataset to
analyze the future trend changes in the LSWT.

Fig.2 reveals notable warming trends in Caohai, Dianchi,
Erhai, Qionghai, Xingyun Lake, and Yangzonghai over the
next five years. Caohai and Qionghai exhibit a change rate of
approximately 0.2°C/year, while Dianchi Lake and Xingyun
Lake show a change rate of around 0.02°C/year. Erhai and
Yangzonghai demonstrate a change rate of approximately
0.1°Cl/year. Conversely, Qilu Lake’s overall lake surface water
temperature shows no significant change, indicating a rel-
atively stable interannual variation trend. Yilong Lake also
exhibits a minimal overall change trend in the future, with an
estimated change rate of approximately 0.02°C/year. Addition-
ally, Fig.2 illustrates that Caohai and Lugu Lake have annual
temperatures below 15°C, while Chenghai, Qionghai, and
Qilu Lake experience average temperatures exceeding 18°C
annually. The other lakes fall within the temperature range
of 16-18°C. Regarding altitude, lakes such as Dianchi, Erhai,
Fuxian Lake, Qilu Lake, Xingyun Lake, and Yangzonghai
are situated between 1700 and 2000 meters above sea level.

Chenghai, Yilong Lake, and Qionghai are located between
1400 and 1600 meters above sea level. Caohai and Yilong
Lake are positioned above 2100 meters, indicating a decrease
in lake surface water temperature with increasing altitude.

C. Explore the performance of Air2water model on the
spatial-temporal scales

In this study, the Air2water model, which functions as the
mechanism model, is employed. Before training the model, we
incorporate the average depth of each lake as a pre-processing
input. This assists in determining the six parameters that are
required for the model. Fig.3 illustrates the satisfactory perfor-
mance of the Air2water model on the monthly averaged data
for the 11 lakes, as indicated by low root mean square error
(RMSE), mean absolute error (MAE), and standard deviation
(SD) values. The RMSE ranges from 0.2°C to 2.65°C (mean:
1.04°C), the MAE ranges from 0.17°C to 2.36°C (mean:
0.89°C), and the SD ranges from 0.38°C to 2.07°C (mean:
0.93°C).

Fig.3 reveals notable variations in model performance
among the lakes. Fuxian Lake demonstrates superior perfor-
mance, while Lugu Lake, Qionghai, Chenghai, Erhai, and
Caohai exhibit relatively poorer performance. The model’s
performance in Yilong Lake, on the other hand, is compar-
atively better, suggesting its effectiveness in shallow lakes.
Nonetheless, the model’s performance in other lakes varies.
Notably, adaptability is not solely determined by lake depth
and water storage capacity, as evidenced by the model’s
favorable performance in both Fuxian Lake and Yilong Lake.
The red areas in the figure indicate regions of poor model
performance, highlighting overall deficiencies during June to
August. Conversely, the darker blue areas represent improved
model performance, particularly during January to April and
December.

Fig.4 presents the performance indicators of the seasonally
averaged Air2water model for the 11 lakes. The graphs clearly
illustrate the changing trends of the three error values on a
seasonal basis, indicating an overall declining trend. From a
seasonal perspective, all lakes exhibited improved performance
during the model’s validation period. The RMSE ranged from
0.16 °C to 1.63 °C (mean: 0.76 °C), the MAE ranged from
0.13 °C to 1.41 °C (mean: 0.66 °C), and the SD ranged from
0.22 °C to 1.07 °C (mean: 0.61 °C).

When comparing Fuxian Lake and Yilong Lake in Fig.4,
it can be observed that the model performance of Fuxian
Lake is better in the first and fourth quarters, while the model
performance of Yilong Lake is better in the second and third
quarters. This difference can be attributed to the stratification
phenomenon in Fuxian Lake from June to November, which
exacerbates the thermal behavior of the lake and reduces the
model’s estimation performance. Other lakes generally showed
poor performance in the second quarter, whereas Lugu Lake
performed poorly in the fourth quarter. Overall, all lakes
exhibited poorer performance in the second and third quarters,
while performing better in the first and fourth quarters. Among
them, Fuxian Lake performed exceptionally well in the first
and fourth quarters. This can be attributed to Fuxian Lake’s
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subtropical monsoon climate, which exhibits stable weather
conditions and less pronounced interannual stratification phe-
nomena. Therefore, the model is highly suitable for predicting
and estimating the LSWT of lakes similar to Fuxian Lake.

Fig.5 illustrates the performance indicators of the Air2water
model for the 11 lakes on an annual basis. The graph indicates
that the average annual RMSE for all the studied lakes ranges
from 0.19°C to 0.58°C (mean: 0.28°C), while the MAE
ranges from 0.16°C to 0.52°C (mean: 0.25°C). Additionally,
the SD varies between 0.14°C and 0.48°C (mean: 0.25°C).
These results provide strong evidence of the effectiveness and
reliability of the Air2water model in accurately estimating
LSWT.

Fig.5 depicts a decreasing trend in the error values of
the model’s annual average data compared to the error val-
ues of the monthly average data. Among the lakes, Lugu
Lake exhibits the poorest model performance compared to
other lakes, while the performance is relatively good in the
remaining lakes. The data presented in Fig.3, Fig.4, and
Fig.5 provide insights into the model’s performance across
different lakes. Fig.3 indicates that, on a monthly time scale,
the model performs well for lakes such as Dianchi, Erhai,

yearly
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Fig. 5. RMSE, MAE, and SD for the annual average of the Air2water model

Fuxian Lake, and Yangzonghai, while demonstrating poorer
performance for Chenghai, Qionghai, and Lugu Lake. The
performance for other lakes falls within a moderate range.
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Fig.4, illustrating the quarterly average time scale, shows
that the model performs better for Fuxian Lake and Yilong
Lake, but exhibits weaker performance for Chenghai, Lugu
Lake, and Qionghai Lake. The model’s performance for other
lakes generally falls within an acceptable range. Examining
the annual average data in Fig.5, the model performs better
for Qilu Lake but shows poorer performance for Lugu Lake.
In summary, the model’s performance in simulating LSWT
follows the order of interannual ; quarterly average ; monthly
average.

D. Explore the performance of the LSTM model on the spatial-
temporal scales

After conducting tests and evaluations using the LSTM
model, we have identified the range of parameters that are suit-
able for this research in the solver. Taking into consideration
the findings from our investigations and previous experiments,
it has been determined that the optimal number of hidden
neurons for each lake should be set at 200. The effectiveness
of the estimates for the 11 lakes can be observed in the figure
below, demonstrating that the model’s performance matches
that of the underlying model used for data prediction. To
assess the model’s performance and usability, an error analysis
is conducted using data from the validation period. Fig.6
illustrates the error values for the 11 lakes when the LSTM
model is employed for data prediction, showcasing the model’s
performance across different time periods for each lake. The
RMSE for these lakes during the validation phase ranged from
0.33°C to 2.42°C (mean: 1.23°C). The MAE varied between
0.25°C and 2.11°C (mean: 1.03°C), while the SD ranged from
0.22°C to 1.67°C (mean: 0.79°C).

From Fig.6, it is evident that the model exhibits better
performance for Fuxian Lake, while Lugu Lake and Chenghai
demonstrate poor performance. The data variations in Lugu
Lake deviate from the sinusoidal curve, making it challenging
for the model to capture the interannual LSWT changes
accurately. This finding highlights the similarity between the
LSTM model and the Air2water model, both of which rely on

LSWT exhibiting sinusoidal curve regularity over the years
to enable more precise estimation. As depicted in the figure,
the model’s performance is subpar from June to October
but improves during the time period of January to April
and November. The poor performance observed in Chenghai,
Lugu Lake, and Qionghai during this period indicates that
the trend of lake surface water temperature in these three
lakes is unstable and may be influenced to varying degrees
by the thermal behavior of the lake and the intensity of
human activities. Additionally, it suggests that neither model
is suitable for accurately estimating the occurrence of extreme
weather events.

Fig.7 illustrates the performance index of the LSTM model
for the seasonal average, demonstrating its effectiveness in
estimating data on this scale for the 11 lakes. The evaluation of
performance is based on the three error values: RMSE, MAE,
and SD, aiming to assess the consistency between the model’s
estimated quarterly average data and the observed data. During
the validation period, the RMSE for all lakes ranged from 0.31
°C to 1.71 °C (mean: 0.86 °C), while the MAE varied between
0.22 °C to 1.57 °C (mean: 0.75 °C), and the SD ranged from
0.26 °C to 1.08 °C (mean: 0.54 °C). These findings highlight
the model’s ability to effectively estimate the quarterly average
LSWT data for the studied lakes.

Fig.7 provides evidence of the model’s reliability in pre-
dicting LSWT, particularly in lakes such as Caohai, Dianchi,
Fuxian Lake, Alder Lake, Yilong Lake, and Yangzonghai,
where it demonstrates better performance on a quarterly scale.
However, Lugu Lake exhibited poor performance in the first
and fourth quarters, while Chenghai performed poorly in the
second and third quarters. Taking into account the overall
picture of the lakes, it is observed that all lakes performed
better in the fourth quarter but performed worse in the second
and third quarters. These observations suggest the seasonal
variations in LSWT and highlight the varying performance of
the model across different quarters and lakes.

Fig.8 presents the performance indicators of the LSTM
model on the average annual time scale for the 11 lakes. These
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data highlight the higher accuracy of the model in estimating
LSWT during the validation period. Furthermore, the figure
illustrates the variation in average annual error values. The
RMSE of the 11 lakes ranged from 0.21°C to 0.84°C (mean:
0.40°C), while the MAE varied between 0.18°C and 0.81°C
(mean: 0.36°C). Additionally, the SD ranged from 0.20°C to
0.56°C (mean: 0.28°C). These results emphasize the model’s
ability to provide reliable estimates of LSWT on an annual
average basis for the studied lakes.

Fig.8 reveals a gradient decline in data error values on the
annual average scale compared to the monthly average scale.
Among the three-error indicators, RMSE exhibits the highest
values overall, while SD shows the smallest values, indicating
that the model’s estimated values are more volatile and less
dispersed. By considering Fig.6, Fig.7, and Fig.8 collectively,
the performance of the LSTM model in predicting LSWT
can be assessed. Fig.6 demonstrates the model’s superior
performance on lakes such as Fuxian Lake, Qilu Lake, and
Yangzonghai. Fig.7 highlights the model’s better performance
on lakes including Caohai, Dianchi, Yangzonghai, and Yilong
Lake. Finally, Fig.8 indicates that the model performs well on
Dianchi Lake. These findings provide evidence of the LSTM

model’s effectiveness in predicting LSWT for the selected
lakes.

E. Accuracy analysis of estimation data from the two models

Based on the findings presented in Fig.9, the suitability
of the two models in predicting LSWT was evaluated by
assessing the goodness of fit between the models and the
observed data. The study revealed a high degree of consistency
between the two models and the observed LSWT data. The
difference in R2 values between the model based on 11 lakes
and the observed data ranged from 0.002 to 0.047, indicating
a close match between the predicted and observed values.
However, for Chenghai Lake, both models exhibited relatively
lower fit, with an R2 of 0.72 for the Air2water model and
0.69 for the LSTM model. In contrast, the R2 values for the
remaining lakes were greater than 0.80 for both models. These
results demonstrate that the two models effectively capture
the interannual variation of LSWT in the time series data of
these 11 high-precision lakes. Furthermore, when considering
the performance based on the 11 lakes, the Air2water model
(RMSE: 0.28°C, MAE: 0.25°C, SD: 0.25°C) outperformed the
LSTM model (RMSE: 0.40°C, MAE: 0.36°C, SD: 0.28°C).

Based on the analysis presented in Fig.9, it can be observed
that the LSTM model demonstrates a good fit in Qionghai,
while both models exhibit the best fit in Qilu Lake. This
suggests that the two models are well-suited for predicting
ecological environments such as Qilu Lake. Overall, the
Air2water model outperforms the LSTM model in the 11 lakes,
indicating that air temperature has a stronger influence on
LSWT compared to other comprehensive factors. Therefore,
the Air2water model is more suitable for lake inversion. The
results reveal that the effect of air temperature on LSWT in
Yangzonghai and Yilong Lake is 0.046 and 0.047 higher than
that of the comprehensive factors, respectively. In Chenghai,
the effect of air temperature on LSWT is 0.027 higher than
the comprehensive factors, while in Qionghai, it is 0.002
lower than the combined factors. In summary, Qionghai is
significantly influenced by factors other than air temperature
that contribute to positive feedback on LSWT. On the other
hand, Caohai and other lakes are greatly affected by factors
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Fig. 9. The fits between the estimated data and the observed data of the Air2water model and the LSTM model

other than air temperature that contribute to negative feedback
on LSWT.

F. The goodness-of-fit of the two models is estimated data

Based on the analysis presented in Fig.10, it can be observed
that the simulated data of both the Air2water model and the
LSTM model exhibit a high level of goodness of fit. The
difference between the simulated data of the two models on
the 11 lakes is minimal, further affirming their reliability.
Furthermore, the study results indicate that factors other than
air temperature have a relatively small influence on the surface
water temperature of the lakes, accounting for roughly 20%
or less.

Fig.10 illustrates the strong performance of the estimated
data from both models, disregarding the systematic errors
associated with the LSWT estimation. The figure also presents
the interaction coefficient R2 between air temperature and
LSWT, as well as the interaction coefficient of other factors,
which can be calculated as 1 - R2. This analysis provides

insights into the degree of interaction between various factors
and LSWT.

The results show that the determination coefficient R2 of
the influence of the temperature of Caohai, Dianchi, Qilu Lake
and Xingyun Lake on the LSWT is greater than 0.9, while the
other lakes are around 0.85 except Lugu Lake which is lower
at 0.81, indicating that the air temperature of the study area
has a dominates influence on the LSWT, and other factors
account for a relatively weak proportion. Lugu Lake has the
highest latitude than other lakes, and similarly Qionghai has
the second highest latitude, and the determination coefficient
shows that the LSWT at high latitudes may be affected by
factors other than air temperature higher than that of lakes at
low latitudes. Therefore, the two models are well used in the
spatial distribution of 11 lakes in the Yunnan-Guizhou-Sichuan
Plateau. Through the above analysis, it is calculated that the
effect of other factors of Caohai, Dianchi, Qilu Lake and
Xingyun Lake is less than 10%, while the other factors of other
lakes are greater than 10% and less than 20%. It also shows
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Fig. 10. The fit of the estimated data of the two models

that the combined role of other factors except air temperature
is far less than the relative effect of air temperature on the
LSWT, but it also shows that the role of other comprehensive
factors in some lakes cannot be ignored. In order to further
quantify the impact of climate change on LSWT, the data on
the monthly time scale were selected for analysis to correctly
describe the complex feedback system of LSWT. This study
uses different models to simulation data in the prediction
process, it shows that the Air2water model is more suitable
for the response of LSWT to climate change [14], [15]. The
machine learning model is more suitable for the learning of
empirical processes, and deep learning also has good results in
the trend of interannual changes, which expands the research
method of factors in time series [31].

IV. CONCLUSION

This study focuses on 11 lakes in the Yunnan-Guizhou
Plateau. The Air2water model was selected to estimate the
LSWT, and the LSTM model was also used to construct
the future LSWT. We first employed LSTM to forecast the

monthly average temperature data spanning from 2021 to
2025. Subsequently, we utilized these predictions as meteo-
rological indicators to estimate the LSWT during the same
time frame. We then compared the estimated LSWT data with
the monthly average LSWT data predicted by LSTM for the
years 2021 to 2025.By analyzing the accuracy of data during
the verification period, we can evaluate the performance of
both models in terms of spatial and temporal aspects. This
evaluation helps determine the model that performs better in
each space-time scale, providing a solid foundation for estab-
lishing a new dataset. Re-establishing a new dataset for 2021-
2025, the analysis of the results showed that the annual change
of the surface water temperature of each lake was less than
0.2°C (Fig.2). The study results present a comparative analysis
of the performance between two models utilized for the
estimation and prediction of water temperature. The Air2water
model based on physical process (monthly average RMSE
= 1.04°C, MAE = 0.89°C, and SD = 0.93°C) outperforms
the machine learning LSTM model (monthly mean RMSE
= 1.23°C, MAE = 1.03°C, and SD = 0.79°C). By the year



2025, several lakes, including Caohai, Dianchi Lake, Erhai
Lake, Qionghai Lake, Xingyun Lake, and Yangzong Lake, are
projected to experience a significant warming trend with a rate
of 0.2°C. Notably, Caohai Lake exhibits the highest warming
rate among these lakes. Additionally, the spatial distribution
reveals that Caohai Lake, located in the northeast of the other
lakes, experiences a more pronounced warming trend com-
pared to other regions within the study area. These findings
contribute to our understanding of the regional dynamics and
temperature changes in the studied lakes, furthering the field
of geography. Finally, this research discusses the application
of the models to estimate and predict LSWT in different
temporal and spatial contexts, highlighting the significance
of accurate lake physical processes and model construction
methods in achieving high accuracy. The study emphasizes
the dependence of inversion and prediction accuracy of LSWT
on the energy influencing the lake’s physical processes and
the inherent systematic errors of the models. To improve the
simulation and forecasting of future LSWT changes, it is
crucial to refine the understanding of lake physical processes
and enhance model construction techniques. The findings
demonstrate the utilization of air temperature and LSWT as
input and output variables in the models to assess the influence
of atmospheric factors on LSWT predictions and investigate
future trend patterns. While the machine learning approach
may be comparatively less effective than the physical process-
based method, this research paves the way for exploring hybrid
approaches that combine physical processes with machine
learning to enhance both runtime efficiency and prediction
accuracy of LSWT. Importantly, this study highlights the
importance of integrating various hydrological time series
research methods into the framework of machine learning
to enhance the prediction of lake surface water temperature.
These findings make a valuable contribution to the field of
geography by enhancing our understanding and predictive
capabilities of LSWT dynamics.
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